Semiring Frameworks and Algorithms for Shortest-Distance Problems
نویسنده
چکیده
We define general algebraic frameworks for shortest-distance problems based on the structure of semirings. We give a generic algorithm for finding single-source shortest distances in a weighted directed graph when the weights satisfy the conditions of our general semiring framework. The same algorithm can be used to solve efficiently classical shortest paths problems or to find the k-shortest distances in a directed graph. It can be used to solve single-source shortest-distance problems in weighted directed acyclic graphs over any semiring. We examine several semirings and describe some specific instances of our generic algorithms to illustrate their use and compare them with existing methods and algorithms. The proof of the soundness of all algorithms is given in detail, including their pseudocode and a full analysis of their running time complexity.
منابع مشابه
ALGORITHMS FOR BIOBJECTIVE SHORTEST PATH PROBLEMS IN FUZZY NETWORKS
We consider biobjective shortest path problems in networks with fuzzy arc lengths. Considering the available studies for single objective shortest path problems in fuzzy networks, using a distance function for comparison of fuzzy numbers, we propose three approaches for solving the biobjective prob- lems. The rst and second approaches are extensions of the labeling method to solve the sing...
متن کاملEfficient Computation of the Relative Entropy of Probabilistic Automata
The problem of the efficient computation of the relative entropy of two distributions represented by deterministic weighted automata arises in several machine learning problems. We show that this problem can be naturally formulated as a shortest-distance problem over an intersection automaton defined on an appropriate semiring. We describe simple and efficient novel algorithms for its computati...
متن کاملFinding the Shortest Hamiltonian Path for Iranian Cities Using Hybrid Simulated Annealing and Ant Colony Optimization Algorithms
The traveling salesman problem is a well-known and important combinatorial optimization problem. The goal of this problem is to find the shortest Hamiltonian path that visits each city in a given list exactly once and then returns to the starting city. In this paper, for the first time, the shortest Hamiltonian path is achieved for 1071 Iranian cities. For solving this large-scale problem, tw...
متن کاملGeneric e-Removal and Input e-Normalization Algorithms for Weighted Transducers
We present a new generic ǫ-removal algorithm for weighted automata and transducers defined over a semiring. The algorithm can be used with any semiring covered by our framework and works with any queue discipline adopted. It can be used in particular in the case of unweighted automata and transducers and weighted automata and transducers defined over the tropical semiring. It is based on a gene...
متن کاملFaster Algorithms for Algebraic Path Properties in RSMs with Constant Treewidth
Interprocedural analysis is at the heart of numerous applications in programming languages, such as alias analysis, constant propagation, etc. Recursive state machines (RSMs) are standard models for interprocedural analysis. We consider a general framework with RSMs where the transitions are labeled from a semiring, and path properties are algebraic with semiring operations. RSMs with algebraic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Automata, Languages and Combinatorics
دوره 7 شماره
صفحات -
تاریخ انتشار 2002